已知抛物线y2=2px(p>0),过焦点F的动直线l交抛物线于A、B两点,则我们知道1|AF|+1|BF|为定值,请写出关于椭圆的类似的结论:______,当椭

已知抛物线y2=2px(p>0),过焦点F的动直线l交抛物线于A、B两点,则我们知道1|AF|+1|BF|为定值,请写出关于椭圆的类似的结论:______,当椭

题型:不详难度:来源:
已知抛物线y2=2px(p>0),过焦点F的动直线l交抛物线于A、B两点,则我们知道
1
|AF|
+
1
|BF|
为定值,请写出关于椭圆的类似的结论:______,当椭圆方程为
x2
4
+
y2
3
=1时,
1
|AF|
+
1
|BF|
=______.
答案
已知抛物线y2=2px(p>0),过焦点F的动直线l交抛物线于A、B两点,则我们知道
1
|AF|
+
1
|BF|
为定值,
关于椭圆的类似的结论:过椭圆的焦点F的动直线交椭圆于A、B两点,则
1
|AF|
+
1
|BF|
为定值
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),过焦点F的动直线l交椭圆于A、B两点,
1
|AF|
+
1
|BF|
=
2a
b2
为定值.当椭圆方程为
x2
4
+
y2
3
=1时,
1
|FA|
+
1
|FB|
=
4
3

故答案为:过椭圆的焦点F的动直线交椭圆于A、B两点,则
1
|AF|
+
1
|BF|
为定值;
4
3
举一反三
已知两点A(0,


3
)
B(0,-


3
)
.曲线G上的动点P(x,y)使得直线PA、PB的斜率之积为-
3
4

(I)求G的方程;
(II)过点C(0,-1)的直线与G相交于E、F两点,且


EC
=2


CF
,求直线EF的方程.
题型:不详难度:| 查看答案
已知两点F1(-


2
,0)
F2(


2
,0)
,曲线C上的动点P(x,y)满足
.
PF1
.
PF2
+|
.
PF1
|×|
.
PF2
|=2.
(I)求曲线C的方程;
(II)设直线l:y=kx+m(k≠0),对定点A(0,-1),是否存在实数m,使直线l与曲线C有两个不同的交点M、N,满足|AM|=|AN|?若存在,求出m的范围;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知抛物线C:y2=4x的焦点为F,过点F的直线l与C相交于A、B.
(Ⅰ) 若|AB|=
16
3
,求直线l的方程.
(Ⅱ) 求|AB|的最小值.
题型:不详难度:| 查看答案
已知抛物线y2=6x,过点P(4,1)引一弦,使它恰在点P被平分,求这条弦所在的直线l的方程.
题型:不详难度:| 查看答案
直线y=kx+1与双曲线x2-y2=1的左支交于A,B两点,直线l经过点(-2,0)及AB中点,求直线l在y轴上截距b的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.