已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)﹣f1(x)≤k(x﹣a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”. (1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式; (2)已知函数f(x)=x2,x∈[﹣1,4],试判断f(x)是否为[﹣1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由; (3)已知b>0,函数f(x)=﹣x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围. |