1.性质中三角形全等是条件,结论是对应角、对应边相等。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
2.当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
3.用在实际中,一般我们用全等三角形测相等的距离。以及相等的角,可以用于工业和军事。
4.三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。
已知∠AOB=90°,OM是∠AOB的平分线,将一个直角RPS的一个直角顶点P在射线OM上移动,点P不与O重合 (1)如图,当直角RPS的两边分别在OA、OB交与点C、D时,请判断PC与PD的数量关系,并证明你的结论; (2)如图,在(1)的条件下,设CD与OP的交点是G,且PG=PD,求的值; (3)若直角RPS的一边与射线OB交于点D,另一边与直线OA、直线OB分别交于点C、E,且以P、D、E为顶点的三角形与△OCD相似,请画出示意图;当OD=1时,直接写出OP的长。 | |||||||||||||||||||||
⑴ 如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH; ⑵如图2,若将“正方形ABCD”改为“菱形ABCD”,其他条件不变,探索线段EF与线段GH的关系并加以证明; ⑶如图3,若将“正方形ABCD”改为“矩形ABCD”,且AD=mAB,其他条件不变,探索线段EF与线段GH的关系并加以证明。 | |||||||||||||||||||||
附加题:根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题,画出图形,并证明,若不能,说明理由. | |||||||||||||||||||||
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F ,且AF=BD,连结BF (1)求证:D是BC的中点. (2)如果AB=AC ,试判断四边形AFBD的形状,并证明你的结论. | |||||||||||||||||||||
如图,已知正方形ABCD的边长为4,延长CB到E,使BE=3,连接AE,过A作AF⊥AE,交DC于F。 (1)找出图中全等的一组三角形,并证明你的结论; (2)求线段AF的长。 | |||||||||||||||||||||
如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连结AC,BD. (1)求证:AC=BD; (2)若图中阴影部分的面积是πcm2 ,OA=2cm,求OC的长 | |||||||||||||||||||||
如图,直角梯形ABCD中,AD∥BC ,∠BCD=90°,且BC=CD=2AD ,过点D作DE∥AB ,交∠BCD的平分线于点E,连接BE.将△BCE绕点C,顺时针旋转90°得到△DCG ,连接EG。 (1)求证:CD垂直平分EG; (2)求证:直线BE平分线段CD。 | |||||||||||||||||||||
已知:如图(1)在Rt△ABC中,∠BAC=90°,AB = AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系。 小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连结E"D,使问题得到解决。请你参考小明的思路探究并解决下列问题: (1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明; (2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明。 | |||||||||||||||||||||
如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE。 | |||||||||||||||||||||
(1)求证:AC=AE; (2)求△ACD外接圆的半径。 | |||||||||||||||||||||
用两个全等的等边△ABC和△ACD拼成如图的菱形ABCD。现把一个含60°角的三角板与这个菱形叠合,使三角板的60°角的顶点与点A重合,两边分别与AB、AC重合。将三角板绕点A逆时针方向旋转。 (1)当三角板的两边分别与菱形的两边BC、CD相交于点E、F时(图a) ①猜想BE与CF的数量关系是__________________; ②证明你猜想的结论。 (2)当三角板的两边分别与菱形的两边BC、CD的延长线相交于点E、F时(图b),连结EF,判断△AEF的形状,并证明你的结论。 | |||||||||||||||||||||
如图所示,我市农科所有一块五边形的实验田,用于种植1号良种水稻进行实验,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=20米。 (1)若每平方米实验田需要1号良种水稻25克,若在△ABC和△ADE实验田中种植1号良种水稻,问共需水稻1号良种多少克? (2)在该五边形实验田计划全部种上这种1号良种水稻,现有1号良种水稻9千克,问1号良种水稻是否够用,试通过计算加以说明。 | |||||||||||||||||||||
.以△ABC的AB、AC为边分别作正方形ADEB、ACGF,连接DC、BF。 (1)CD与BF相等吗?请说明理由。 (2)CD与BF互相垂直吗?请说明理由。 (3)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的。 | |||||||||||||||||||||
如图,正方形ABCD的边长为8厘米,动点P从点A出发沿AB边由A 向B以1厘米/秒的速度匀速移动(点P不与点A、B重合),动点Q从点B出发沿折线BC-CD 以2厘米/秒的速度匀速移动.点P、Q同时出发,当点P停止运动,点Q也随之停止.联结AQ,交BD于点E。设点P运动时间为x秒 (1)当点Q在线段BC上运动时,点P出发多少时间后,∠BEP和∠BEQ相等; (2)当点Q在线段BC上运动时,求证:△BQE的面积是△APE的面积的2倍; (3)设△APE的面积为y,试求出y关于x的函数解析式,并写出函数的定义域。 | |||||||||||||||||||||
|